Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517752

RESUMO

The vesicular monoamine transporter 2 (VMAT2) is a proton-dependent antiporter responsible for loading monoamine neurotransmitters into synaptic vesicles. Dysregulation of VMAT2 can lead to several neuropsychiatric disorders including Parkinson's disease and schizophrenia. Furthermore, drugs such as amphetamine and MDMA are known to act on VMAT2, exemplifying its role in the mechanisms of actions for drugs of abuse. Despite VMAT2's importance, there remains a critical lack of mechanistic understanding, largely driven by a lack of structural information. Here, we report a 3.1 Å resolution cryo-electron microscopy (cryo-EM) structure of VMAT2 complexed with tetrabenazine (TBZ), a non-competitive inhibitor used in the treatment of Huntington's chorea. We find TBZ interacts with residues in a central binding site, locking VMAT2 in an occluded conformation and providing a mechanistic basis for non-competitive inhibition. We further identify residues critical for cytosolic and lumenal gating, including a cluster of hydrophobic residues which are involved in a lumenal gating strategy. Our structure also highlights three distinct polar networks that may determine VMAT2 conformational dynamics and play a role in proton transduction. The structure elucidates mechanisms of VMAT2 inhibition and transport, providing insights into VMAT2 architecture, function, and the design of small-molecule therapeutics.


Assuntos
Doença de Huntington , Tetrabenazina , Humanos , Tetrabenazina/metabolismo , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Prótons , Microscopia Crioeletrônica
2.
Nature ; 626(7998): 427-434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081299

RESUMO

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Assuntos
Microscopia Crioeletrônica , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Sítios de Ligação , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ketanserina/química , Ketanserina/metabolismo , Ketanserina/farmacologia , Reserpina/química , Reserpina/metabolismo , Reserpina/farmacologia , Serotonina/química , Serotonina/metabolismo , Especificidade por Substrato , Tetrabenazina/química , Tetrabenazina/metabolismo , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/ultraestrutura
3.
Nature ; 623(7989): 1086-1092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914936

RESUMO

Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.


Assuntos
Neurotransmissores , Reserpina , Serotonina , Tetrabenazina , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Inibidores da Captação Adrenérgica/química , Inibidores da Captação Adrenérgica/farmacologia , Transporte Biológico/efeitos dos fármacos , Microscopia Crioeletrônica , Neurotransmissores/química , Neurotransmissores/farmacologia , Reserpina/química , Reserpina/farmacologia , Serotonina/metabolismo , Transmissão Sináptica , Tetrabenazina/química , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/ultraestrutura , Especificidade por Substrato/efeitos dos fármacos
4.
Adv Neurobiol ; 30: 101-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928847

RESUMO

Monoamine transporters (MATs) are targets of a wide range of compounds that have been developed as therapeutic treatments for various neuropsychiatric and neurodegenerative disorders such as depression, ADHD, neuropathic pain, anxiety disorders, stimulant use disorders, epilepsy, and Parkinson's disease. The MAT family is comprised of three main members - the dopamine transporter (DAT), the norepinephrine transporter (NET), and the serotonin transporter (SERT). These transporters are through reuptake responsible for the clearance of their respective monoamine substrates from the extracellular space. The determination of X-ray crystal structures of MATs and their homologues bound with various substrates and ligands has resulted in a surge of structure-function-based studies of MATs to understand the molecular basis of transport function and the mechanism of various ligands that ultimately result in their behavioral effects. This review focusses on recent examples of ligand-based structure-activity relationship studies trying to overcome some of the challenges associated with previously developed MAT inhibitors. These studies have led to the discovery of unique and novel structurally diverse MAT ligands including allosteric modulators. These novel molecular scaffolds serve as leads for designing more effective therapeutic interventions by modulating the activities of MATs and ultimately their associated neurotransmission and behavioral effects.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Transporte Biológico , Ligantes , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/efeitos dos fármacos , Transtornos Mentais/tratamento farmacológico , Descoberta de Drogas
5.
BMC Evol Biol ; 19(1): 220, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791232

RESUMO

BACKGROUND: Neurochemicals like serotonin and dopamine play crucial roles in human cognitive and emotional functions. Vesicular monoamine transporter 1 (VMAT1) transports monoamine neurotransmitters, and its variant (136Thr) is associated with various psychopathological symptoms and reduced monoamine uptake relative to 136Ile. We previously showed that two human-specific amino acid substitutions (Glu130Gly and Asn136Thr/Ile) of VMAT1 were subject to positive natural selection. However, the potential functional alterations caused by these substitutions (Glu130Gly and Asn136Thr) remain unclear. To assess functional changes in VMAT1 from an evolutionary perspective, we reconstructed ancestral residues and examined the role of these substitutions in monoamine uptake in vitro using fluorescent false neurotransmitters (FFN), which are newly developed substances used to quantitatively assay VMATs. RESULTS: Immunoblotting confirmed that all the transfected YFP-VMAT1 variants are properly expressed in HEK293T cells at comparable levels, and no significant difference was seen in the density and the size of vesicles among them. Our fluorescent assays revealed a significant difference in FFN206 uptake among VMAT1 variants: 130Glu/136Asn, 130Glu/136Thr, and 130Gly/136Ile showed significantly higher levels of FFN206 uptake than 130Gly/136Asn and 130Gly/136Thr, indicating that both 130Glu and 136Ile led to increased neurotransmitter uptake, for which 136Thr and 136Asn were comparable by contrast. CONCLUSIONS: These findings suggest that monoamine uptake by VMAT1 initially declined (from 130Glu/136Asn to 130Gly/136Thr) in human evolution, possibly resulting in higher susceptibility to the external environment of our ancestors.


Assuntos
Evolução Molecular , Proteínas Vesiculares de Transporte de Monoamina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Monoaminas Biogênicas/metabolismo , Fluorometria , Células HEK293 , Humanos , Modelos Moleculares , Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
6.
Sci Rep ; 9(1): 5403, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932004

RESUMO

The islet ß-cells integrate external signals to modulate insulin secretion to better regulate blood glucose levels during periods of changing metabolic demand. The vesicular monoamine transporter type 2 (VMAT2), an important regulator of CNS neurotransmission, has an analogous role in the endocrine pancreas as a key control point of insulin secretion, with additional roles in regulating ß-cell differentiation and proliferation. Here we report on the synthesis and biological characterisation of a fluorescent ligand for VMAT2 suitable for live cell imaging. Staining for VMAT2 and dopamine in live ß-cell cultures show colocalisation in specific vesicles and reveal a heterogeneous population with respect to cell size, shape, vesicle number, size, and contents. Staining for VMAT2 and zinc ion, as a surrogate for insulin, reveals a wide range of vesicle sizes. Immunohistochemistry shows larger ß-cell vesicles enriched for proinsulin, whereas smaller vesicles predominantly contain the processed mature insulin. In ß-cell cultures obtained from nondiabetic donors, incubation at non-stimulatory glucose concentrations promotes a shift in vesicle diameter towards the more mature insulin vesicles at the expense of the larger immature insulin secretory vesicle population. We anticipate that this probe will be a useful reagent to identify living ß-cells within complex mixtures for further manipulation and characterisation.


Assuntos
Células Secretoras de Insulina/metabolismo , Imagem Óptica/métodos , Vesículas Secretórias/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Dopamina/química , Dopamina/metabolismo , Glucose/farmacologia , Células HEK293 , Humanos , Indicadores e Reagentes/química , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Microscopia de Fluorescência , Proteínas Vesiculares de Transporte de Monoamina/química , Zinco/química , Zinco/metabolismo
7.
J Gen Physiol ; 150(5): 671-682, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29666153

RESUMO

The H+-coupled vesicular monoamine transporter (VMAT) is a transporter essential for life. VMAT mediates packaging of the monoamines serotonin, dopamine, norepinephrine, and histamine from the neuronal cytoplasm into presynaptic vesicles, which is a key step in the regulated release of neurotransmitters. However, a detailed understanding of the mechanism of VMAT function has been limited by the lack of availability of high-resolution structural data. In recent years, a series of studies guided by homology models has revealed significant insights into VMAT function, identifying residues that contribute to the binding site and to specific steps in the transport cycle. Moreover, to characterize the conformational transitions that occur upon binding of the substrate and coupling ion, we have taken advantage of the unique and powerful pharmacology of VMAT as well as of mutants that affect the conformational equilibrium of the protein and shift it toward defined conformations. This has allowed us to identify an important role for the proton gradient in driving a shift from lumen-facing to cytoplasm-facing conformations.


Assuntos
Proteínas Vesiculares de Transporte de Monoamina/química , Animais , Humanos , Domínios Proteicos , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
8.
PLoS Comput Biol ; 14(1): e1005907, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329285

RESUMO

Monoamine transporters (MATs) carry out neurotransmitter reuptake from the synaptic cleft, a key step in neurotransmission, which is targeted in the treatment of neurological disorders. Cholesterol (CHOL), a major component of the synaptic plasma membrane, has been shown to exhibit a modulatory effect on MATs. Recent crystal structures of the dopamine transporter (DAT) revealed the presence of two conserved CHOL-like molecules, suggesting a functional protein-CHOL direct interaction. Here, we present extensive atomistic molecular dynamics (MD) simulations of DAT in an outward-facing conformation. In the absence of bound CHOL, DAT undergoes structural changes reflecting early events of dopamine transport: transition to an inward-facing conformation. In contrast, in the presence of bound CHOL, these conformational changes are inhibited, seemingly by an immobilization of the intracellular interface of transmembrane helix 1a and 5 by CHOL. We also provide evidence, from coarse grain MD simulations that the CHOL sites observed in the DAT crystal structures are preserved in all human monoamine transporters (dopamine, serotonin and norepinephrine), suggesting that our findings might extend to the entire family.


Assuntos
Colesterol/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Drosophila melanogaster , Humanos , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Neurotransmissores/química , Conformação Proteica , Transdução de Sinais , Software , Transmissão Sináptica , Proteínas Vesiculares de Transporte de Monoamina/química
9.
Naunyn Schmiedebergs Arch Pharmacol ; 390(1): 15-24, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27650729

RESUMO

3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT2a,b,c and NEα2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT2a,c receptors as compared to MDMA.


Assuntos
Benzofuranos/metabolismo , Indóis/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Inibidores da Captação de Neurotransmissores/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Benzofuranos/química , Benzofuranos/farmacologia , Sítios de Ligação , Catecol O-Metiltransferase/química , Catecol O-Metiltransferase/metabolismo , Humanos , Indóis/química , Indóis/farmacologia , Monoaminoxidase/química , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/química , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Inibidores da Captação de Neurotransmissores/química , Inibidores da Captação de Neurotransmissores/farmacologia , Ligação Proteica , Conformação Proteica , Ensaio Radioligante , Receptores 5-HT2 de Serotonina/química , Receptores 5-HT2 de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Relação Estrutura-Atividade , Tirosina 3-Mono-Oxigenase/química , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/química
10.
Proc Natl Acad Sci U S A ; 113(47): E7390-E7398, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821772

RESUMO

Neurotransporters located in synaptic vesicles are essential for communication between nerve cells in a process mediated by neurotransmitters. Vesicular monoamine transporter (VMAT), a member of the largest superfamily of transporters, mediates transport of monoamines to synaptic vesicles and storage organelles in a process that involves exchange of two H+ per substrate. VMAT transport is inhibited by the competitive inhibitor reserpine, a second-line agent to treat hypertension, and by the noncompetitive inhibitor tetrabenazine, presently in use for symptomatic treatment of hyperkinetic disorders. During the transport cycle, VMAT is expected to occupy at least three different conformations: cytoplasm-facing, occluded, and lumen-facing. The lumen- to cytoplasm-facing transition, facilitated by protonation of at least one of the essential membrane-embedded carboxyls, generates a binding site for reserpine. Here we have identified residues in the cytoplasmic gate and show that mutations that disrupt the interactions in this gate also shift the equilibrium toward the cytoplasm-facing conformation, emulating the effect of protonation. These experiments provide significant insight into the role of proton translocation in the conformational dynamics of a mammalian H+-coupled antiporter, and also identify key aspects of the mode of action and binding of two potent inhibitors of VMAT2: reserpine binds the cytoplasm-facing conformation, and tetrabenazine binds the lumen-facing conformation.


Assuntos
Mutação , Reserpina/metabolismo , Tetrabenazina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/genética , Animais , Sítios de Ligação , Citoplasma/genética , Citoplasma/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Prótons , Ratos , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
11.
Mol Pharmacol ; 89(1): 165-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26519222

RESUMO

Determining the structural elements that define substrates and inhibitors at the monoamine transporters is critical to elucidating the mechanisms underlying these disparate functions. In this study, we addressed this question directly by generating a series of N-substituted 3,4-methylenedioxyamphetamine analogs that differ only in the number of methyl substituents on the terminal amine group. Starting with 3,4-methylenedioxy-N-methylamphetamine, 3,4-methylenedioxy-N,N-dimethylamphetamine (MDDMA) and 3,4-methylenedioxy-N,N,N-trimethylamphetamine (MDTMA) were prepared. We evaluated the functional activities of the compounds at all three monoamine transporters in native brain tissue and cells expressing the transporters. In addition, we used ligand docking to generate models of the respective protein-ligand complexes, which allowed us to relate the experimental findings to available structural information. Our results suggest that the 3,4-methylenedioxyamphetamine analogs bind at the monoamine transporter orthosteric binding site by adopting one of two mutually exclusive binding modes. 3,4-methylenedioxyamphetamine and 3,4-methylenedioxy-N-methylamphetamine adopt a high-affinity binding mode consistent with a transportable substrate, whereas MDDMA and MDTMA adopt a low-affinity binding mode consistent with an inhibitor, in which the ligand orientation is inverted. Importantly, MDDMA can alternate between both binding modes, whereas MDTMA exclusively binds to the low-affinity mode. Our experimental results are consistent with the idea that the initial orientation of bound ligands is critical for subsequent interactions that lead to transporter conformational changes and substrate translocation.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina/química , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Sítios de Ligação/fisiologia , Transporte Biológico/fisiologia , Células HEK293 , Células HeLa , Humanos , Masculino , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
12.
J Biol Chem ; 289(49): 34229-40, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25336661

RESUMO

Transporters essential for neurotransmission in mammalian organisms and bacterial multidrug transporters involved in antibiotic resistance are evolutionarily related. To understand in more detail the evolutionary aspects of the transformation of a bacterial multidrug transporter to a mammalian neurotransporter and to learn about mechanisms in a milieu amenable for structural and biochemical studies, we identified, cloned, and partially characterized bacterial homologues of the rat vesicular monoamine transporter (rVMAT2). We performed preliminary biochemical characterization of one of them, Brevibacillus brevis monoamine transporter (BbMAT), from the bacterium B. brevis. BbMAT shares substrates with rVMAT2 and transports them in exchange with >1H(+), like the mammalian transporter. Here we present a homology model of BbMAT that has the standard major facilitator superfamily fold; that is, with two domains of six transmembrane helices each, related by 2-fold pseudosymmetry whose axis runs normal to the membrane and between the two halves. The model predicts that four carboxyl residues, a histidine, and an arginine are located in the transmembrane segments. We show here that two of the carboxyls are conserved, equivalent to the corresponding ones in rVMAT2, and are essential for H(+)-coupled transport. We conclude that BbMAT provides an excellent experimental paradigm for the study of its mammalian counterparts and bacterial multidrug transporters.


Assuntos
Proteínas de Bactérias/química , Monoaminas Biogênicas/química , Brevibacillus/química , Proteínas de Transporte/química , Proteínas Vesiculares de Transporte de Monoamina/química , Sequência de Aminoácidos , Animais , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Monoaminas Biogênicas/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Histidina/química , Histidina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
13.
Chem Soc Rev ; 43(19): 6683-91, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24676152

RESUMO

Single photon emission computed tomography (SPECT) or positron emission computed tomography (PET) imaging agents for neurodegenerative diseases have a significant impact on clinical diagnosis and patient care. The examples of Parkinson's Disease (PD) and Alzheimer's Disease (AD) imaging agents described in this paper provide a general view on how imaging agents, i.e. radioactive drugs, are selected, chemically prepared and applied in humans. Imaging the living human brain can provide unique information on the pathology and progression of neurodegenerative diseases, such as AD and PD. The imaging method will also facilitate preclinical and clinical trials of new drugs offering specific information related to drug binding sites in the brain. In the future, chemists will continue to play important roles in identifying specific targets, synthesizing target-specific probes for screening and ultimately testing them by in vitro and in vivo assays.


Assuntos
Doenças Neurodegenerativas/diagnóstico , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Meios de Contraste/química , Meios de Contraste/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Doenças Neurodegenerativas/diagnóstico por imagem , Doença de Parkinson/diagnóstico , Doença de Parkinson/diagnóstico por imagem , Radiografia , Compostos Radiofarmacêuticos/química , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
14.
Neuroscience ; 259: 194-202, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24321511

RESUMO

The 20 amino acid (AA) N-terminus of the vesicular monoamine transporter 2 (VMAT2) was examined as a regulator of VMAT2 function. Removal of the first 16 or 19 AAs of the N-terminus resulted in a molecule with reduced ability to sequester [(3)H]-5HT. A glutathione-S-transferase-construct of the N-terminus underwent phosphorylation in the presence of PKC at serines 15 and 18. These putative phosphorylation sites were examined for effects on function. Phospho-mimetic substitution of serines 15 and 18 with aspartate in the full-length VMAT2 resulted in reduced [(3)H]-5HT sequestration and reduced methamphetamine (METH)-stimulated efflux of preloaded [(3)H]-5HT. In contrast, mutation of serines 15 and 18 to alanines maintained intact net substrate sequestration but eliminated METH-stimulated efflux of pre-accumulated [(3)H]-5HT. In summary, these data suggest a model in which the VMAT2 N-terminus regulates monoamine sequestration.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Inibidores da Captação Adrenérgica/farmacocinética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Modelos Biológicos , Mutação/genética , Neuroblastoma , Fosforilação/efeitos dos fármacos , Serotonina/farmacocinética , Tetrabenazina/farmacocinética , Transfecção , Trítio/farmacocinética , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/genética
16.
Chirality ; 25(4): 215-23, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23532997

RESUMO

This article reports, for the first time, on the absolute configuration of (+)-9-benzyloxy-α-dihydrotetrabenazine (8), as determined from the perspective of X-ray crystallography. Compound 8 was prepared by a six-step reaction using 3-benzyloxy-4-methoxybenzaldehyde (1) as a starting material. The X-ray crystal diffraction structure of two compounds, racemic 9-benzyloxy-tetrabenazine (5) and the diastereomeric salt of compound 8, is also described for the first time in this article. The X-ray results and the chiral HPLC helped elucidate that compound 8 has an absolute configuration as 2R,3R,11bR. The crystal structure of racemic compound 5 contains two symmetry- independent molecules in the unit cell. Interestingly, while they are structural isomers, they are enantiomers, too, i.e., in solution, because they are not mirror images of each other in the crystal lattice. In order to elucidate the intermolecular interaction mechanism of the diastereomeric salt of compound 8, its crystal packing was investigated with regard to the weak interactions, such as salt bridge, OH...O and CH...O hydrogen bonds, and intermolecular CH...π interaction. The results showed that the carbonyl-assisted salt bridges and the OH...O hydrogen bonds formed polar columns in the crystal structure of the diastereomeric salt of compound 8, resembling butterflies with open wings as viewed along the c-axis. These polar columns were extended to three-dimensional network by intermolecular CH...O hydrogen bonds and intermolecular CH...π interactions.


Assuntos
Imagem Molecular , Tetrabenazina/análogos & derivados , Tetrabenazina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Tetrabenazina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/química
17.
Proc Natl Acad Sci U S A ; 110(15): E1332-41, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530208

RESUMO

Vesicular monoamine transporter 2 (VMAT2) catalyzes transport of monoamines into storage vesicles in a process that involves exchange of the charged monoamine with two protons. VMAT2 is a member of the DHA12 family of multidrug transporters that belongs to the major facilitator superfamily (MFS) of secondary transporters. Here we present a homology model of VMAT2, which has the standard MFS fold, that is, with two domains of six transmembrane helices each which are related by twofold pseudosymmetry and whose axis runs normal to the membrane and between the two halves. Demonstration of the essential role of a membrane-embedded glutamate and confirmation of the existence of a hydrogen bond probably involved in proton transport provide experimental evidence that validates some of the predictions inherent to the model. Moreover, we show the essential role of residues at two anchor points between the two bundles. These residues appear to function as molecular hinge points about which the two six transmembrane-helix bundles flex and straighten to open and close the pathways on either side of the membrane as required for transport. Polar residues that create a hydrogen bond cluster form one of the anchor points of VMAT2. The other results from hydrophobic interactions. Residues at the anchor points are strongly conserved in other MFS transporters in one way or another, suggesting that interactions at these locations will be critical in most, if not all, MFS transporters.


Assuntos
Modelos Moleculares , Proteínas Vesiculares de Transporte de Monoamina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico , Membrana Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Cinética , Dados de Sequência Molecular , Plasmídeos/metabolismo , Conformação Proteica , Ratos , Especificidade por Substrato
18.
Neuro Endocrinol Lett ; 33(5): 546-51, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23090274

RESUMO

OBJECTIVES: Although single nucleotide polymorphisms of the human vesicular monoamine transporter 1 (hVMAT1) gene SLC18A1 have been associated with neuropsychiatric disorders, there is limited information on the function of naturally occurring hVMAT1 variant proteins. This study evaluated transport activity of full length hVMAT1 isoform-a (NP_003044.1) with a threonine (Thr) or isoleucine (Ile) at amino acid 136 and hVMAT1 isoform-b (NP_00135796.1) with a 136-Thr and deletion of 32 amino acids in the central region of the protein. Genetic studies have previously linked the 136-Thr to bipolar disorder. METHODS: Expression vectors with hVMAT1 DNA coding for isoform variants were transfected into COS-1 cells. Expression of immunoreactive proteins was assessed by Western blotting, and function was assayed by ATP-dependent transport of radiolabeled serotonin and concentration-dependent inhibition by reserpine. RESULTS: Immunoreactive isoform-a proteins were observed as a major doublet (68-71 Kd) and a minor 39 Kd protein. The major isoform-b protein was 47 Kd with minor 57 and 115 Kd proteins. Isoform-b had no detectable transport activity, despite a large amount of immunoreactive protein. Transport activity of isoform-a with 136-Thr was 20-50% lower than with 136-Ile in time course studies (2.5-5 min) and in additional 5 min assays repeated with 5-6 transfections per variant. Kinetic analyses indicated a lower transport Vmax of isoform-a with 136-Thr but no significant differences in the transport Km or reserpine IC50. CONCLUSIONS: Deletion of amino acids 307-338 in hVMAT1 isoform-b abolishes transport activity, and a 136-Thr partially reduces activity of isoform-a.


Assuntos
Transtorno Bipolar/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Transporte Biológico/genética , Transtorno Bipolar/metabolismo , Células COS , Chlorocebus aethiops , Humanos , Técnicas In Vitro , Isomerismo , Estrutura Terciária de Proteína , Esquizofrenia/metabolismo , Serotonina/metabolismo , Transfecção , Proteínas Vesiculares de Transporte de Monoamina/química
19.
Bioorg Med Chem Lett ; 21(11): 3435-8, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21531556

RESUMO

In the search of new probes for in vivo brain imaging of vesicular monoamine transporter type 2 (VMAT2), we have developed an efficient synthesis of a novel series of 3-alkyl-dihydrotetrabenazine (DTBZ) derivatives. The affinity of VMAT2 was evaluated by an in vitro inhibitory binding assay using [(125)I]-iodovinyl-TBZ or [(18)F](+)-FP-DTBZ as radioligands in rat striatal tissue homogenates. New DTBZ derivatives exhibited moderate to good binding affinity to VMAT2. Among these new ligands, compound 4b showed the best affinity for VMAT2 (K(i)=5.98 nM) and may be a useful lead compound for future structure-activity studies.


Assuntos
Radioisótopos de Flúor , Tetrabenazina/análogos & derivados , Proteínas Vesiculares de Transporte de Monoamina/química , Animais , Corpo Estriado/química , Corpo Estriado/metabolismo , Cristalografia por Raios X , Diagnóstico por Imagem , Ligantes , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Ratos , Tetrabenazina/síntese química , Tetrabenazina/química
20.
J Neural Transm (Vienna) ; 118(9): 1383-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21484276

RESUMO

Platelet vesicular monoamine transporter (VMAT2) binding characteristics were assessed, using high affinity dihydrotetrabenazine ([(3)H]TBZOH) binding, in 14 children with major depression (MDD) and 16 matched controls. All participants underwent a thorough diagnostic evaluation and the levels of depression and anxiety were measured. K (d) values were significantly lower in children with MDD versus controls (2.93 ± 0.84 vs. 3.63 ± 0.56 nM, respectively, t = 2.4, df = 18.4, p = 0.025). B (max) values did not differ significantly. This preliminary finding indicates a possible structural change in platelet VMAT2 in children with MDD.


Assuntos
Transtorno Depressivo Maior/metabolismo , Tetrabenazina/análogos & derivados , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Adolescente , Plaquetas/metabolismo , Criança , Transtorno Depressivo Maior/diagnóstico , Feminino , Humanos , Masculino , Projetos Piloto , Ligação Proteica/fisiologia , Ensaio Radioligante , Tetrabenazina/farmacocinética , Trítio , Proteínas Vesiculares de Transporte de Monoamina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...